Overview

- Introduction to Advanced Plasma Power Ltd
- Background to Belgium Landfill project and Enhanced Landfill Mining (ELFM) concept
- Description of the Gasplasma® Process
- Gasplasma® Treatment of Belgium Landfill SRF
- Gasplasma® Features in respect to Landfill Mining
Introduction to APP

- Established in 2005 to develop and commercialise the worldwide patented Gasplasma® EfW technology developed over previous 2 years by Tetronics

- Objective is to be a leading player in the waste to renewable energy market by delivering innovative solutions for responsible resource management

- Swindon plant operating since 2008

- Substantial project pipeline includes waste/engineering companies from UK, Western Europe, USA, Canada, Brazil, Korea, Middle East, Bulgaria, Poland
Closing the Circle: Group Machiels Project

- Recovery of 16 million tonnes of municipal and industrial solid waste stored at the Remo landfill site of Group Machiels in Houthalen-Helchteren/Limburg, Belgium

- 4 Key Objectives:
 - Maximum recuperation of materials
 - Energy recovery with incorporated materials recuperation
 - CO₂ reduction, use and/or off-set
 - Recuperation of nature

Group Machiels: International Symposium on Enhanced Landfill Mining 2010
Enhanced Landfill Mining (ELFM): The Concept

- ELFM allows storing the waste for its future recovery
- Fully sustainable approach - maximum practical recovery
- Complete reclamation of the landfill site
- Integration of innovative technologies to ensure:
 - Effective recovery of materials
 - High efficiency energy recovery
- Significant reduction in green house gas emissions compared to a conventional landfill
- Carbon reduction and other environmental benefits need to be assigned a proportionate economic value in form of “incentives” to encourage investment
Enhanced Landfill Mining: Waste Characterisation

- Remo site has detailed waste inventory since its inception
- Establish reliability of waste inventory regarding type, amount and location on the site
- Assessment of potential for materials recovery and potential for energetic valorisation validated

Group Machiels: International Symposium on Enhanced Landfill Mining 2010
Enhanced Landfill Mining: Carbon Balance

- Carbon Balance assessment of CtC Remo gave CO$_2$ savings of 1.0 M tonnes over 20 years compared to “Do-Nothing” scenario:
 - Avoids burning of fossil fuels for power/heat generation
 - Carbon offsets from recovered materials
- Additional CO$_2$ savings may be achieved:
 - From utilisation of heat
 - Production of low C cement materials

Group Machiels: International Symposium on Enhanced Landfill Mining 2010
The Gasplasma® Process

- RDF from landfill 90ktpa
- Screw Feed Hopper
- Stage 1 Fluid Bed Gasifier
- Stage 2 Plasma Convertor
- Heat Exchanger
- Gas Cleaning Equipment
- Crude Syngas
- Cleaned Syngas
- Cracked Syngas
- Power Island generating renewable power and heat
The Gasplasma® Process in ELFM

- Prepared fuel from the mining and materials recuperation stages provides the fuel for the thermal process.
- Gasifier acts as work horse of the two stage process mitigating the usually high parasitic load required by other plasma plants.
- Energy Products of Idaho (EPI) provide the fluidised bed gasifier and have 100 reference plants worldwide.
- Tetronics provide the plasma convertor and have 80 reference installations worldwide.
- The gas cooling and cleaning process uses conventional industrial equipment.
- The power island comprises conventional reciprocating gas engines.
- Emissions treatment is managed with proven catalyst technology and is monitored continuously.

FLOW CHART:
- **FUEL STORAGE**
 - Prepared fuel from landfill
- **FLUID BED GASIFIER**
 - Produces syngas with tars and particulates
- **PLASMA CONVERTER**
 - High temperature
 - Intense UV
- **GAS COOLING & CLEANING**
 - Reduces temperature of syngas
 - Removes particulate
 - Removes acid gases
- **POWER GENERATION**
 - Gas engines/turbines
 - Waste heat
 - Steam turbine
- **EXHAUST**
Gasplasma®: Cracking Organics
Gasplasma®: Swindon Plant

- Pilot Plant - 2005 to 2007
- Demonstration Plant – from 2007
- EPI Gasifier
- Tetronics Plasma Converter
- Syngas cooling & cleaning
- 100 kW gas engine
- SCADA
- FTIR gas analysis
- Feed includes RDF, ASR, Mined Landfill, Tyre Crumb, Wood, CCA
- Opportunity to test client materials
Gasplasma®: Treatment of Remo Material

Extensive test work undertaken on two types of materials:
- 1 Simulated material
- 2 Recovered RDFs from Remo mined material, Belgium

✔ Established optimal process operating parameters for this fuel to attain required plant and environmental performance levels

✔ Provided valuable data to enable us to optimise the models that support the commercial plant

✔ The data has also been used to assist specifying equipment and engage with potential suppliers

Key conclusions from test programme:
✔ Able to deliver required project outputs

✔ Emissions for the commercial plant will be Vlarem II (and IED) compliant

✔ High energy conversion efficiency attained
Gasplasma®: Treatment of Remo Landfill Material

- Energy conversion efficiencies of up to 86% of solid fuel to cold syngas (compared with 73% reported for fluid bed gasifiers in published literature)

- Carbon conversion efficiencies of c.96% compared to c.80-85% reported for fluid bed gasifiers

- Combined cycle conversion efficiencies (i.e. from gas and steam cycle) of up to 43% from syngas to electricity will be attained on commercial plant compared to <25% for a similar capacity plant operating on combustion/steam cycle only. High overall net electrical efficiencies attainable.

- Utilisation of the heat as well as power will significantly increase overall energy efficiency on the commercial plant
Gasplasma® Outputs for Phase 1 at Remo

- Total landfill arising: 16 million tonnes
- Throughput of RDF per line*: 90,000 tpa
- Gross electrical output: 22MWe
- Net electrical output to export: 18MWe
- Power output: 135,000 MWh pa
- Power for: 18,000 homes
- Surplus heat for export: 13 MW
- Plasmarok® - product not a waste: 14,000 tpa
- Exceptionally low residual wastes: 2,000 t APC pa
- Bottom ash: Nil
- Emissions: IED/ Vlarem II compliant

* Phase 1 is for 1 process line. It is anticipated that there will be 5 lines in total
Gasplasma® Output: Plasmarok®

Summary of results for inert WAC limit compliance
BS EN 12457-3 Leaching tests on vitrified sample at particle size <4mm

<table>
<thead>
<tr>
<th>Heavy metal species</th>
<th>Average leachate value (mg/kg)</th>
<th>Inert waste landfill Limit values (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Ba</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Cd</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Cr</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cu</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Hg</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>Mo</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ni</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Pb</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sb</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Se</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zn</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Main constituents: Silica 37%; Lime 31% ; Alumina 16%
Others include: Iron Oxide; Titania; Magnesia; Sodium Oxide; Potash ; Phosphate

Mechanically strong, extremely leach resistant
Accepted by EA as a product – not a waste
Gasplasma®: Physical Layout of Plant

FEATURES

- 150,000 tpa plant needs building of c.10,000 sq.m.
- Standard buildings: Commercial / Industrial sheds:
- Similar profile to warehouse
- Maximum roof height 16 metres
- UK planning status: classed as a Recovery Plant not as waste disposal
- Full site requirement of c.8 acres (3.5 hectares)
- Stack height of c.25 metres (c.10m above roof)
Gasplasma®: A Future Gateway Technology

- High energy conversion efficiency attained
- Syngas is clean and high in Hydrogen
- Ideal precursor for fuel cell applications
 - Suitable with some further clean up for use in high temperature fuel cells (MCFC or SOFC)
 - Carbon Monoxide treated in a water shift reactor to produce more Hydrogen for use in hydrogen fuel cells for distributed energy generation or in hydrogen vehicles
- Potential to produce gaseous and liquid fuels
 - Production of Bio-Substitute natural gas (SNG)
 - Production of Gas to Liquids
Summary: Gasplasma® Benefits for ELFM

Efficiency
- High net electrical efficiency
- Heat recovery is feasible

Environmental
- No residual ash
- Plasmarok® – product not waste
- Negative carbon footprint
- IED / Vlarem II compliant emissions

Social
- Low impact upon the community
- Enables reclamation of amenity land

Economic
- Complementary to recycling and MBT
- Reclamation of valuable materials
- Future proof – syngas has multiple applications
Any Questions?

B2 / B3 Marston Gate
South Marston Business Park
Stirling Road
Swindon SN3 4DE
Tel: +44 (0)1793 238550
Fax: +44 (0)1793 834476

Thank you